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Abstract. The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with
distance rα, 1 < α < 2, is investigated using a numerically efficient transfer matrix (TM) method. Finite
size approximations to the infinite chain are considered, in which both the number of spins and the number
of interaction constants can be independently increased. Systems with interactions between spins up to 18
sites apart and up to 2500 spins in the chain are considered. We obtain data for the critical exponents ν
associated with the correlation length based on the Finite Range Scaling (FRS) hypothesis. FRS expressions
require the evaluation of derivatives of the thermodynamical properties, which are calculated with the help
of analytical recurrence expressions obtained within the TM framework. The Van den Broeck extrapolation
procedure is applied in order to estimate the convergence of the exponents. The TM procedure reduces
the dimension of the matrices and circumvents several numerical matrix operations.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Fh Phase transitions: general
studies – 75.10.Pq Spin chain models

1 Introduction

It has been well-known that the thermodynamical proper-
ties and critical behavior of physical models is affected by
the presence of long-range interactions. They define com-
pletely new classes of models, where cooperative effects
are enhanced and change the thermodynamical properties
in comparison to those of the short-range interaction mod-
els. Due to the presence of simultaneous coupling among
many degrees of freedom, the long-range models offer very
difficult technical problems that makes it impossible to de-
rive exact expressions for the thermodynamical properties
within the equilibrium statistical ensemble formulation.
This is observed already for the most simple long-range
Ising chain, which has been investigated for many decades.
In its most simple version, each spin σi interacts with all
other spins on the chain mediated by coupling constants
Jr = J/rα, where r is the distance between the interacting
spins measured in integer number of lattice spacings.

Although no closed form solution for this model is
available, there are several rigorous results on the exis-
tence of distinct thermodynamical phases, what depends
on the range of values of α. The most important features
of these rigorous results are: for α > 2, the system shows
only a disordered phase, ∀T [1,2]; for 1 < α ≤ 2, there
is a phase transition at finite temperature Tc [3,4]; criti-
cal mean field behavior occurs for 1 < α ≤ 1.5 [1,2]; for
α < 1, only one ordered phase exists, ∀T . Regarding the
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evaluation of approximate results, both renormalization
group schemes [5–8] and numerical calculations of finite
size systems [7–10] have been used to estimate the ther-
modynamical properties, the critical temperature and the
critical exponents when 1 < α ≤ 2.

More recently, the scaling behavior of this model, spe-
cially in the range 0 ≤ α ≤ 1, where the energy is not
an extensive quantity, has also been addressed. Investiga-
tions have been motivated by a universal scaling scheme
proposed by Tsallis [11–13], that should be valid for both
extensive and non-extensive long-range models, as those
constituted by spins [14–17] rotors [18,19], and so on.

In this work we use a numerically efficient transfer ma-
trix (TM) approach [20] to analyse the critical behavior of
the system, estimating the critical exponents ν associated
with the correlation length in the range for 1 < α ≤ 2,
where the system undergoes a phase transition. In a previ-
ous paper [21], we have introduced this approach to check
the validity of Tsallis’ scaling conjecture to the Ising long-
range chain, and to find estimates for the critical tempera-
ture. We obtained results that show very good accordance
with other numerical estimates, indicating that the pro-
posed approach is quite reliable. It takes into account the
long-range interactions between spins, up to a certain dis-
tance g apart, in the evaluation of the thermodynamical
properties of the system. Also, this method allows to in-
dependently increase the number of spins N in the chain,
so that N ≥ g + 1.

The TM approach used herein makes use of very
compact matrices, so that the configuration energies and
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Fig. 1. A schematic representation of the construction of the
infinite 3-chain (g = 3) for c = 0, 1 and 2.

Boltzmann weights, that are numerically evaluated, can
be stored and operated in a very efficient way. For in-
stance, we note that the TM procedure avoids the numer-
ical evaluation of the TM eigenvalues. For the evaluation
of ν, this framework is quite useful, as it leads to ana-
lytical expressions for the derivatives of the Boltzmann
weights that can be similarly stored in very compact ma-
trices. So, the derivatives of thermodynamical properties
can be directly computed, avoiding the use of numerical
differentiation [7].

This work is organized as follows: in Section 2 we dis-
cuss the essential aspects of transfer matrix method (TM)
used to evaluate the critical exponents. In Section 3 we
present the critical temperature, the critical exponent ν
associated with the correlation length for values of α in the
following range: 1 < α < 2. In Section 4 we discuss the re-
sults and compare with some previous results [7]. Section 5
closes the work with our final remarks and perspectives.

2 Transfer matrix framework

The long-range Ising chain is described by the
Hamiltonian

H = −
∞∑

i=0

∞∑

r=1

Jrσiσi+r − h
∞∑

i=0

σi, (1)

where σi = ±1 is a classical spin at site i, h is an external
field and Jr are the coupling interactions between spins at
distance r.

One can construct this model by starting with an infi-
nite chain but a finite number interaction constants. Then,
in a series of steps g, all Jg are introduced at once, among
all pairs of spins that are g sites apart. It is also possi-
ble to construct the model by taking a finite chain with g
distinct coupling constants and N = g + c + 1 ≥ g + 1
spins. Thus, for a generic value g, if c new spins are in-
cluded in the chain, g×c new interactions, mediated by Jr,
r = 1, 2, ... g, are added, linking every new spin to all spins
up to g sites apart that have been introduced at the pre-
vious generations. In Figure 1, we show, for example, for
fixed g = 3, the interactions for the first 3 values of c.
If g → ∞, N → ∞, so that this procedures leads to the
same actual system. However, for finite values of g, the
first construction procedure can be recovered by letting
c → ∞.

In this work, we consider the second way of construc-
tion quoted above, which is schematically represented in
Figure 1, for which the finite chain has N = g+c+1 spins
that interact with all spins up to g sites apart. This way, it
is possible to obtain a partition function based on 2×2 TM

Mg,c, instead of 2g×2g TM M̂g introduced in reference [7].
Besides working with smaller TM’s, this approach has the
advantage of avoiding the use of numerical diagonalization
procedures to evaluate the largest eigenvalues. According
to this TM scheme, which has been described with enough
details in [21], the 2 × 2 TM Mg,c are given by:

Mg,c =

(
g∏

k=1

Pk

)
(Qg · Pg)c · Lg ≡ Rg,cLg. (2)

where Lg is a 2g+1×2 matrix whose elements (Lg)i,j = 1,
for i + j even, and (Lg)i,j = 0, for i + j odd; Pk are
recursively expressed by:

(Pk)i,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Pk−1)i,j a
(−1)j−1

k for i ≤ 2k−1,

and j ≤ 2k

(Pk)2k−i+1,2k+1−j+1 for 2k−1 ≤ i ≤ 2k,

and 2k ≤ j ≤ 2k+1

0 otherwise
(3)

where ak = exp(Jk/T ); Qg is a 2g+1×2g matrix defined by

(Qg)i,j =
{

1 for i = j or i = j + 2g

0 otherwise. (4)

Therefore the free energy per spin, fg,c = −T ln(Zg,c)/N
follows from the partition function

Zg,c = 2λ+
g,c = 2((Mg,c)1,1 + (Mg,c)1,2) =

∑

i,j

(Rg,c)i,j .

(5)
The correlation function between the first and the r-th
spins along the chain, restricted to the case c = 0, de-
fined by a g-dependent correlation function Cg(r; T ) =
〈σ1σr〉g, r = 1, ..., g, is given by

Cg(r; T ) ≡ 1
Zg

∑

i,j

[
P 1

(
g∏

k=2

Pk

)
Lg,r

]

i,j

, (6)

where

P 1 =
(

a1 b1 0 0
0 0 −b1 −a1

)
, (Lg,r)i,j = −1qg,r(j),

qg,r(j) = L

[
j − 1
2g−r

]
, (7)

with b1 = a−1
1 and L[x] ≡ largest integer in x.

The definition of Cg(r; T ) can be extended to Cg,c(i, i+
r; T ), where c > 0, r > g. If we use (6) for r = g, we
have Cg(g; T ) = λ−

g /λ+
g . Note further that the correlation

length for a chain composed of patches described by the
matrix Mg,c=0 is given by

ξg =
g

ln(λ+
g /λ−

g )
= − g

ln(Cg(g; Tc,g))
. (8)

Based on the above expressions for thermodynamical
properties, we obtain analytical expressions for λ+

g,c
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and λ−
g,c given by:

λ±
g,c =

2g−1∑

j=1

[ag(j, 1) ± ag(2g + 1 − j, 1)]γ±
g,c(j)], (9)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ±
g,c+1 = ag(2j − 1, 2)γ±

g,c(2j − 1) + ag(2j, 2)γ±
g,c(2j)

j = 1, 2, . . . , 2g−2

γ±
g,c+1 = ±ag(2j − 1, 2)γ±

g,c(2g + 2 − 2j)
±ag(2j, 2)γ±

g,c(2g + 1 − 2j), j = 2g−2 + 1 . . . 2g−1,

ag(j, 1) = (
∏g

i=1 Pi)1,j , j = 1, 2..., 2g−1

ag(j, 2) = (Pj)1,j , j = 1, 2..., 2g−1

(10)
with γ±

g,c=0(j) = ±1.
Since the eigenvalues λ±

g,c are given by (9), we can eas-
ily derive expressions for their derivatives with respect
to T and h, from which the thermodynamic functions,
expressed in terms of the derivatives of the free energy,
can be easily evaluated without resorting to numerical
differentiation.

To obtain the scaling properties of ξ we will make use
of the FRS framework [7]. This scheme proposes a scal-
ing hypothesis which is formally similar to the well known
finite size scaling, which compares the behaviors of finite
size systems with different number of components. In FRS,
one assumes similar relations among systems with distinct
number of coupling constants, hence of different interac-
tion ranges. Starting from the assumption that, close to
the critical temperature T , any thermodynamical func-
tion y(t) of the reduced temperature t = (T − T/T ) is
described by a power law

y(t) = A0t
−ρ, (11)

and that a finite number g of coupling constants modifies
the actual criticality by a correction factor f , it is proposed
that

yg(t) = y∞(t)f(g/ξ∞). (12)

Using (11) and (12), it is possible to show that, close to T ,
the condition

ξg(t)
ξg+1(t′)

=
g

g + 1
, (13)

holds. Or, equivalently, t and t′ are related by

t′ =
[

g

g + 1

] 1
ν

t. (14)

The critical temperature T g at order g is obtained by the
condition

ξg(tg)
ξg+1(tg)

=
g

g + 1
, (15)

and it is expected that the series of values tg converge to
the actual t = 0 in the limit g → ∞.
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Fig. 2. Dependence of Tg,c on c, for α = 1.8 and a fixed value
of g, for example, g = 10.

Linearizing and expanding around T g, leads to

ξg+1(t)
ξg(t′)

=
ξg+1(tg) + (dξg+1(tg)/dt)t

ξg(tg) + (dξg(tg)/dt)t′
. (16)

Combining (14) with (16), we obtain estimates of the crit-
ical exponent νg as

1
νg

=
ln
(

dξg(tg)/dt

dξg+1(tg)/dt

)
− 1

ln
(

g
g+1

) . (17)

3 Results

In reference [21], we have obtained a series of estimates T
for the critical temperature, based on the observed behav-
ior for Cg(r; T ), which corresponds exactly to the condi-
tion expressed by (15). In such case, we have considered
N = g + 1, i.e., c = 0. The actual value of T has been
evaluated by an extrapolation procedure, with very good
accuracy, although the individual values Tg are not so close
to T .

To address the question of the critical behavior near
the critical temperature, we need to be in a much closer
neighborhood of T . So we found it becomes necessary to
consider a larger number of spins in the chain, what re-
quires larger values of g and c. Increasing g leads to ex-
ponential growth of storage capacity and computing time.
We found, however, that taking a better approximation to
the infinite chain, what amounts to increasing c for a fixed
value of g, makes it possible to reach a closer neighborhood
of T .

To this purpose, we evaluate a series of critical temper-
atures Tg,c depending on both g and c, from which we ob-
tain first Tg = limc→∞ Tg,c and T = limg→∞ Tg. Each Tg,c

is obtained by imposing the condition (16), where each ξg

actually indicates ξg,c, which is evaluated for correspond-
ing values of g and c with the help of (2). In Figure 2, we
show how Tg,c depends on c, for a fixed value of g when
α = 1.8; the behavior does not change for other values
of g.
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Table 1. Values of Tg and νg, for odd values of g and α = 1.2. Data are displayed for accuracy ε = 10−4 and ε = 10−3 that was
required for the limiting value of Tg. The corresponding smallest value of c at which the accuracy was reached is also indicated.

α = 1.2 ε = 10−4 ε = 10−3

g c(ε) Tg,c νg,c c(ε) Tg,c νg,c

3 684 5.5419339 2.4783289 208 5.3921944 2.4336811

5 1058 6.6798492 2.7505706 314 6.4445671 2.6616931

7 1396 7.3835491 2.9643628 410 7.0728148 2.8315852

9 1706 7.8632795 3.1338069 492 7.4796335 2.9552605

11 1990 8.2103090 3.2697569 566 7.7599961 3.0455192

13 2260 8.4726154 3.3805739 632 7.9590277 3.1099467

15 2500 8.6753271 3.4710018 692 8.1041143 3.1550949

VBS extrapolation - 9.482310 3.803537 - 8.910613 3.288895

In our numerical evaluation, Tg has been obtained
with a given accuracy, as we increase the value of c until
| Tg,c+1 − Tg,c |< ε, where the highest accuracy corre-
sponds to ε 	 10−4. For such situation, c can be as large
as 2500, depending on the values of g and α. The largest
value of g = 18 has been obtained for α = 1.6.

In Tables 1–4, we show the values of Tg and νg, for dis-
tinct values of g and 1 < α < 2: α = 1.2, 1.4, 1.6 and 1.8,
for a fixed value of accuracy ε = 10−4. In order to analyse
the effect of the accuracy ε, for values of α, inside and
outside the mean field region, α = 1.2 (Tab. 1) and 1.8
(Tab. 4) respectively, we include, in these tables, the data
for another value of ε = 10−3. It is easy to see that the
value of c is very sensible to the accuracy ε; in Figure 2
we plot the critical temperature Tg,c for increasing values
of c, corresponding to, respectively, decreasing values of ε.

Regarding the values of Tg,c and νg,c, we see that they
form a monotonic series, increasing with respect to both g
and c, approaching T from the lower side. In order to ex-
trapolate the finite series results for a limit value T and ν,
we have used the Vanden Broeck and Schwartz (VBS)
extrapolation procedure used both in [7] and [21]. We ob-
serve that the values of Tg,c, for any value of α, are much
larger than those obtained previously for c = 0 [21]. But,
despite of this, some of the extrapolated values are smaller
than those predicted from the series Tg,c=0. This is cer-
tainly due to the fact that, as c(ε) depends on g, the chain
has different numbers of spins (see Tabs. 1–4).

In Table 5, we show the VBS extrapolated values of ν
for the same values of α and a fixed value of ε = 10−4.
Here we are lead to the most interesting result of this pa-
per as it represents an improvement to previous results.
For the purpose of comparison, we use the known exact
values for ν = 1/(α−1) in the range 1 < α ≤ 1.5, when the
values obtained from the mean field analysis should pre-
vail also for those from an exact solution. It is clear that
our VBS extrapolation leads to a better agreement with
the exact value in comparison to the corresponding VBS
extrapolated results in [7]. Also, based on the same com-
parison, we see, in Table 1, that the extrapolated values
of ν = limg→∞ νg get better when ε is reduced from 10−3

to 10−4. Note that we use larger values of N (N ≈ 15 for
all values of α) than those ones used in reference [7], what

Table 2. Values of Tg and νg, for odd values of g and α = 1.4.
Data are displayed for accuracy ε = 10−4 that was required for
the limiting value of Tg and the corresponding smallest value
of c is also indicated.

α = 1.4 ε = 10−4

g c(ε) Tg,c νg,c

3 492 3.8408632 2.1731057

5 694 4.3296422 2.2598101

7 856 4.5894104 2.3162027

9 994 4.7474461 2.3539294

11 1112 4.8515617 2.3793714

13 1216 4.9241076 2.3964600

15 1310 4.9767888 2.4076891

VBS extrapolation - 5.022703 2.437089

Table 3. Values of Tg and νg, for odd values of g and α = 1.6.
Data are displayed for accuracy ε = 10−4 that was required for
the limiting value of Tg and the corresponding smallest value
of c is also indicated.

α = 1.6 ε = 10−4

g c(ε) Tg,c νg,c

3 382 2.8178502 2.0697087

5 510 3.0448535 2.0947359

7 608 3.1555507 2.1052548

9 688 3.2190642 2.1091374

11 756 3.2591533 2.1095755

13 814 3.2859512 2.1080216

15 866 3.3047686 2.1053158

17 910 3.3180850 -

18 932 3.3234981 -

VBS extrapolation - 3.328188 2.109820

should be very important for the estimation of the the
critical exponents. In this sense, the efficient TM method
that we have applied is very useful to reduce the CPU
time of the numerical calculations.

The values of νg for c = 0 are indeed far away from the
exact ones. This indicates that, although the value of T
can be evaluated with good precision from the c = 0 finite
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Table 4. Values of Tg and νg, for odd values of g and α = 1.8. Data are displayed for accuracy ε = 10−4 and ε = 10−3 that
was required for the limiting value of Tg and the corresponding smallest value of c is also indicated.

α = 1.8 ε = 10−4 ε = 10−3

g c(ε) Tg,c νg,c c(ε) Tg,c νg,c

3 314 2.1323856 2.1231430 94 2.0633542 2.1560530

5 408 2.2243788 2.1639020 122 2.1346603 2.2165373

7 482 2.2642364 2.1873097 142 2.1575740 2.2647878

9 540 2.2847804 2.2036550 158 2.1642335 2.3109579

11 592 2.2967828 2.2163352 172 2.1644328 2.3583671

13 636 2.3039057 2.2273095 186 2.1629377 2.4063897

15 676 2.3083424 2.2372586 198 2.1588773 2.4598516

VBS extrapolation - 2.315334 2.246300 - 2.167883 2.910225

Table 5. Comparative table of VBS extrapolated values of T
and ν, for distinct values of 1 < α < 2, using ε = 10−4, ob-
tained from the data in Tables 1–4. We also include the cor-
responding value ν, calculated by Glumac and Uzelac [7], νgu,
and the exact value of ν, νex for the mean field values of α.

α ν νgu νex

1.2 3.803537 7.0 5.0
1.4 2.437089 2.7 2.5
1.6 2.109820 2.15 -
1.8 2.246300 2.22 -

size data, the critical properties require indeed to probe
the system in a close neighborhood of T . So, it is amazing
to observe that our TM approach was able to be adapted
to perform this most sensitive task.

4 Conclusions

In this work we presented results for the critical expo-
nent ν for the long-range Ising chain, based on the numer-
ical evaluation of the eigenvalues of a 2× 2 TM, that con-
denses the information regarding the Boltzmann weights
for all configurations of a finite size chain of g+c+1 spins
including interaction among spins up to g sites apart. The
adopted approach requires the minimum possible storage
space and avoids the necessity of eigenvalue evaluation.
The results were obtained with a double precision Fortran
code implemented on a common desk computer.

The comparison of our estimates with similar results
reported by other authors shows that they are of the same
quality or better than those obtained by a TM procedures
that requires much larger matrices. In particular, we have
used the known exact values of ν in the range 1 < α ≤ 1.5
to check the validity of our results.

As compared to our previous implementation of our
TM framework, we have shown that it is indeed reliable
and that it could be successfully extended to much larger
values of c, what was required in order to probe the close
neighborhood of T . Despite the fact that analytical ex-
pression for the derivatives of the eigenvalues represents
an important achievement of our approach and avoids the
numerical differentiation of ξ, we have observed that nu-
merical overflows in our Fortran code did not allow push-

ing the series of νg to the same larger values of g = 24
that were reached in our first evaluation of the critical
temperature when c = 0. Efforts to sidestep this effect
and to include the evaluation of the magnetization expo-
nent β are currently being undertaken to present a more
complete analysis of this model.

This work has been partially supported by the Brazilian agen-
cies CNPq and FAPESB.
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